Yu Zhang¹, Huiyan Chen¹, Steven L. Waslander², Tian Yang¹ Sheng Zhang¹, Guangming Xiong¹, Kai

Motivation Methods

Results

Reference

Speed Planning for Autonomous Driving via Convex Optimization

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ , Sheng Zhang¹ , Guangming Xiong¹ , Kai Liu¹

 $^{1}\mbox{Beijing Institute of Technology}$ $^{2}\mbox{University of Toronto Institute of Aerospace Studies}$

October 25, 2018

Email: yu.zhang.bit@gmail.com

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai Liu¹

Motivation Methods Results

Reference

1 Motivation

2 Methods

3

4 Reference

2/20

Speed Planning for Autonomous Driving via Convex Optimization

Yu Zhang¹, Huiyan Chen¹, Steven L. Waslander², Tian Yang¹ Sheng Zhang¹, Guangming Xiong¹, Kai

Motivation

Methods

Results

Reference

Motivation

Speed Planning for Autonomous Driving

Speed planning exists in two main motion planning frameworks

- Coupled motion planning framework
 - Explore the spatial-temporal space simultaneously using optimization techniques or search algorithms
- Decoupled motion planning framework
 - Plan a path first, then regulate the speed along the resulting path
 - Do speed planning directly along a fixed path (the focus of this paper)

de Back

• Forward

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Motivation

Methods

Results

Reference

Motivation

Challenges from Various Scenarios

A speed planner should be able to

Requirements

- Exploit the full mobility capacity of cars to deal with emergencies
- Encourage smooth speed profiles for ride comfort , better tracking performance
- Pursue time efficiency

e.g. drive on the limits to pursue high speeds, racing car

4/20

Avoid static obstacles

e.g. safe stop at certain point of the path

Avoid dynamic obstacles

e.g. moving vehicles, cyclists, pedestrians

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Motivation

Methods

Results

Reference

Motivation

Metrics and Requirements

Constraints for speed planning

Category	Constraint Name	Description	Property		
Soft Constraints	Smoothness (S) Time Efficiency (TE)	continuity of speed, acceleration and jerk over the path time used by travelling along the path	performance performance		
Hard Constraints	Friction Circle (FC) Time Window (TW) Boundary Condition (BC)	total force should be within the friction circle time window to reach a certain point on path speed at the end of the path	safety safety safety&performance		

Remark

A safety-guaranteed speed planner should be able to generate a solution satisfying at least all the hard constraints (safety) in the Table.

A mature speed planner should cover all these constraints that include soft and hard ones.

5/20

Speed Planning for Autonomous Driving via Convex Optimization

📀 Back

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Motivation

Methods

Results

Reference

Motivation

State-of-the-art Methods

Capacity of different speed planning methods

Method	Name	s	TE	FC	тw	вс	Optimality	Safety	Mobility	Flexibility
Li <i>et al</i> . [1]	Trapezoid	\checkmark	x	x	x	\checkmark	×	low	low	low
Gu <i>et al.</i> [2, 3, 4]	Constraint-based	\checkmark	X	X	X	\checkmark	×	medium	medium	medium
Dakibay et al. [5]	Approximated	×	X	\checkmark	X	\checkmark	×	medium	high	low
Liu <i>et al</i> . [6]	SCFS	\checkmark	×	×	\checkmark	\checkmark	local	medium	medium	medium
Lipp et al. [7]	MTSOS	×	\checkmark	\checkmark	×	×	global	low	high	low

S: smoothness, TE: time efficiency, FC: friction circle, TW: time window, BC: boundary condition

Mobility How much mobility capacity of the vehicle the planner is able to leverage.

- **Optimolity** Whether the planner is able to identify an optimal solution in terms of its objective.
- Flexibility How many type of scenarios the planner is able to handle by only adjusting parameters without changing underlying problem formulation or problem structures.
 - Sofety Ability to stop in front of obstacles (BC) precisely, ability to deal with emergencies (FC), and ability to handle dynamic obstacles (TW).

6/20

Speed Planning for Autonomous Driving via Convex Optimization

< Back

Yu Zhang¹, Huiyan Chen¹, Steven L. Waslander², Tian Yang¹ Sheng Zhang¹, Guangming Xiong¹, Kai

Motivation

Methods Results Reference

Motivation

Limitations of existing methods

Limitations

- Not every aspect is covered (Completeness)
- Acceleration capacity is not fully exploited (Friction Circle)
- Dynamic obstacles are not handled reasonably well (Time Window)
- Smoothness is ignored by some of them (Ride Comfort, Tracking Performance)

Speed Planning for Autonomous Driving via Convex Optimization

Ger Back

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Motivation

Methods

Results

Reference

Motivation

Our Goals

Problem Definition

Assuming a curvature continuous path has been generated by a hierarchical motion planning framework, the speed planning is to find a

- time-efficient
- safe
- smooth

speed profile travelling along the fixed path with respect to both safety and performance constraints.

8/20

de Back

• Forward

Our Goals

- employ a unified framework to deal with various driving scenarios
- cover safety, comfort, time efficiency and mobility
- prefer an elegant mathematical model instead of error-prone algorithms

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai Liu¹

Motivation

Methods

Results

Reference

Methods – Preliminaries

Path Representation

General arc-length representation in Cartesian coordinate system

$$r(s) = (x(s), y(s)), s \in [0, s_f]$$

Any path can be easily converted to this form.

• Associate speed profiles with paths in the arc-length one dimension space by

$$s = f(t)$$

• Math Trick according to Verscheure et al.[8]

 $lpha(s)=\ddot{f}, \quad ext{longitudinal acceleration}$ $eta(s)=\dot{f}^2, \quad ext{square of the longitudinal speed}$

The prime / and the dot \cdot denote derivatives with respect to the arc-length, s, and the time, t, respectively for a curve.

🔷 Back 📄 🗍

📀 Back

Chen¹, Steven L. Waslander², Tian Yang¹ Sheng Zhang¹ Guangming Xiong¹, Kai

Methods

Methods

Time Efficiency Objective and Time Window Constraints

Speed Planning for Autonomous Driving via Convex Optimization

de Back

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Motivation

Methods

Results

Reference

Methods

Smoothness Objective

• The jerk J(s) of the speed:

$$\mathcal{J}(s) = \overleftarrow{f} = \dot{\alpha}(s) = \alpha'(s)\dot{f}$$
$$= \alpha'(s)\sqrt{\beta(s)} = \frac{1}{2}\beta''(s)\sqrt{\beta(s)},$$

which is nonlinear and non-convex. (Common used but not a good option for optimization!)

• The **pseudo jerk**, $\alpha'(s)$:

the first derivative of acceleration with respect to the arc-length, $\boldsymbol{s}.$ The smoothness function is defined as

$$J_S = \int_0^{s_f} \|\alpha'(s)\|^2 ds,$$

which is convex!(Our Choice!)

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Motivation

Methods

Results

Reference

Methods

Overall Problem Formulation – Convex Optimization Problem

$\begin{array}{c} {\color{black} {\sf minimize}} \\ \alpha(s), \beta(s), u(s) \end{array}$	$J = \frac{J_T}{(\text{Time Efficiency})} + \frac{\omega J_S}{(\text{Smoothness})}$					
s.t.	(.	Red parts are our contributions.				
(Vehicle Dynamics)	$R\boldsymbol{u}=m\ddot{r},$					
(State Constraints)	$\beta'(s) = 2\alpha(s), s \in [0, s_f],$					
(Friction Circle)	$(\alpha(s), \beta(s), \boldsymbol{u}(s)) \in \left\{ \left(\ddot{r}(s), \dot{r}^2(s), \boldsymbol{u}(s) \right) \in u^{\tau}(s) \leq m \cdot a_m^{\tau} \right\}$	$\ \ oldsymbol{u}(oldsymbol{s}) ig) ig\ \ oldsymbol{u}(oldsymbol{s}) \ \leq \mu m g,$ $a_{x}, eta(oldsymbol{s}) \leq v_{max}^2 ig\},$				
(Boundary Condition)	$\begin{split} \underline{\alpha}_{s_f} &\leq \alpha_{s_f} \leq \bar{\alpha}_{s_f} \\ \underline{\beta}_{s_f} &\leq \beta_{s_f} \leq \bar{\beta}_{s_f}, \end{split}$					
(Time Window)	$t_i = T(s_i) \in W_T = (0, T_U].$					
Note that $lpha(s),eta(s),u(s)$ are the decision variables. The coefficient $\omega\in\mathbb{R}_+$ is fixed in advance.						

Speed Planning for Autonomous Driving via Convex Optimization

🍫 Back

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Methods Results

Reference

Featured Results

Speed Planning for Safe Stop

Yu Zhang¹ , Huiyan Chen¹, Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Motivation Methods Results

Reference

Featured Results

Speed Planning Dealing with Jaywalking on a curvy road

Speed Planning for Autonomous Driving via Convex Optimization

e Back

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Motivation Methods

Results

Reference

Featured Results

Speed planning for Freeway Entrance Ramp Merging

Speed Planning for Autonomous Driving via Convex Optimization

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Motivation

Methods

Results

Reference

Featured Results

Compare to State-of-the-art Methods

Method	s	TE	FC	тw	вс	Optimality	Safety	Mobility	Flexibility
Li <i>et al</i> . [1]	\checkmark	X	×	X	\checkmark	×	low	low	low
Gu <i>et al</i> . [2, 3, 4]	\checkmark	X	X	×	\checkmark	×	medium	medium	medium
Dakibay <i>et al</i> . [5]	X	X	\checkmark	×	\checkmark	×	medium	high	low
Liu <i>et al</i> . [6]	\checkmark	\checkmark	X	\checkmark	\checkmark	local	medium	medium	medium
Lipp <i>et al</i> . [7]	X	\checkmark	\checkmark	×	X	global	low	high	low
Ours	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	global	high	high	high

Forward

de Back

S: smoothness, TE: time efficiency, FC: friction circle, TW: time window, BC: boundary condition

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Motivation

Methods

Results

Reference

Conclusions

Features and Capacities of Our Method

Capacity: general, flexible, complete, and safe

- maintain the smoothness of the speed profile
- drive within the limits of the friction circle
- consider the time efficiency
- determine the end boundary condition of the state
- perform a precise safe stop
- control the arrival time at a certain point on the path (time window)
- guarantee global optimality (convex optimization)

Yu Zhang¹ , Huiyan Chen¹ , Steven L. Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai

Motivation

Results

Reference

Results

Expect more improvements?

Please see our follow-up journal papers:

Zhang Y, Chen H, Waslander S, Yang T, Zhang S, Xiong G, Liu K.

"Toward a More Complete, Flexible, and Safer Speed Planning for Autonomous Driving via Convex Optimization."

Sensors. 2018 Jul 6;18(7):2185.

Thank you for your attention!

de Back

• Forward

Yu Zhang¹ , Huiyan Chen¹ , Steven L, Waslander² , Tian Yang¹ Sheng Zhang¹ , Guangming Xiong¹ , Kai Liu¹

Motivation

Methods

Results

Reference

References I

X. Li, Z. Sun, D. Cao, Z. He, and Q. Zhu, "Real-time trajectory planning for autonomous urban driving: Framework, algorithms, and verifications," *IEEE/ASME Transactions on Mechatronics*, vol. 21, no. 2, pp. 740–753, 2016.

T. Gu, J. Snider, J. M. Dolan, and J.-w. Lee, "Focused trajectory planning for autonomous on-road driving," in *IEEE Intelligent Vehicles Symposium (IV)*, 2013, pp. 547–552.

T. Gu, "Improved trajectory planning for on-road self-driving vehicles via combined graph search, optimization & topology analysis," Ph.D. dissertation, Carnegie Mellon University, 2017.

T. Gu, J. Atwood, C. Dong, J. M. Dolan, and J.-W. Lee, "Tunable and stable real-time trajectory planning for urban autonomous driving," in *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, 2015, pp. 250–256.

A. Dakibay and S. L. Waslander, "Aggressive vehicle control using polynomial spiral curves," in *IEEE International Conference on Intelligent Transportation Systems (ITSC)*, Yokohama, Japan, October 2017.

C. Liu, W. Zhan, and M. Tomizuka, "Speed profile planning in dynamic environments via temporal optimization," in *IEEE Intelligent Vehicles* Symposium (IV), 2017, pp. 154–159.

T. Lipp and S. Boyd, "Minimum-time speed optimisation over a fixed path," *International Journal of Control*, vol. 87, no. 6, pp. 1297–1311, 2014.

D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl, "Time-optimal path tracking for robots: A convex optimization approach," *IEEE Transactions on Automatic Control*, vol. 54, no. 10, pp. 2318–2327, 2009.