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Motivation
Speed Planning for Autonomous Driving
Speed planning exists in two main motion planning frameworks

Coupled motion planning framework
Explore the spatial-temporal space simultaneously using optimization techniques or
search algorithms

Decoupled motion planning framework
Plan a path first, then regulate the speed along the resulting path
Do speed planning directly along a fixed path (the focus of this paper)

3/203/20

Speed Planning for Autonomous Driving via Convex Optimization ForwardBack



Speed Planning for
Autonomous Driving via
Convex Optimization

Yu Zhang1 , Huiyan
Chen1 , Steven L.

Waslander2 , Tian Yang1 ,
Sheng Zhang1 ,

Guangming Xiong1 , Kai
Liu1

Motivation

Methods

Results

Reference

Motivation
Challenges from Various Scenarios

A speed planner should be able to

Requirements

Exploit the full mobility capacity of cars
to deal with emergencies

Encourage smooth speed profiles
for ride comfort , better tracking performance

Pursue time efficiency
e.g. drive on the limits to pursue high speeds, racing car

Avoid static obstacles
e.g. safe stop at certain point of the path

Avoid dynamic obstacles
e.g. moving vehicles, cyclists, pedestrians
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Motivation
Metrics and Requirements

Constraints for speed planning
Category Constraint Name Description Property

Soft Constraints Smoothness (S) continuity of speed, acceleration and jerk over the path performance
Time Efficiency (TE) time used by travelling along the path performance

Hard Constraints Friction Circle (FC) total force should be within the friction circle safety
Time Window (TW) time window to reach a certain point on path safety
Boundary Condition (BC) speed at the end of the path safety&performance

Remark
A safety-guaranteed speed planner should be able to generate a solution satisfying at least all the
hard constraints (safety) in the Table.
A mature speed planner should cover all these constraints that include soft and hard ones.
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Motivation
State-of-the-art Methods

Capacity of different speed planning methods
Method Name S TE FC TW BC Optimality Safety Mobility Flexibility

Li et al. [1] Trapezoid X 7 7 7 X 7 low low low
Gu et al. [2, 3, 4] Constraint-based X 7 7 7 X 7 medium medium medium
Dakibay et al. [5] Approximated 7 7 X 7 X 7 medium high low
Liu et al. [6] SCFS X X– 7 X X– local medium medium medium
Lipp et al. [7] MTSOS 7 X X 7 7 global low high low

S: smoothness, TE: time efficiency, FC: friction circle, TW: time window, BC: boundary condition

Mobility How much mobility capacity of the vehicle the planner is able to leverage.

Optimality Whether the planner is able to identify an optimal solution in terms of its objective.

Flexibility How many type of scenarios the planner is able to handle by only adjusting parameters without changing underlying problem
formulation or problem structures.

Safety Ability to stop in front of obstacles (BC) precisely, ability to deal with emergencies (FC), and ability to handle dynamic
obstacles (TW).
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Motivation
Limitations of existing methods

Boundary Condition

Friction Circle

SmoothnessTime Efficiency

Time Window
10

20

30

Li et al. [1]
Gu et al. [2, 4]
Dakibay et al. [5]
Liu et al. [6]
Lipp et al. [7]

Limitations
Not every aspect is covered
(Completeness)

Acceleration capacity is not fully
exploited
(Friction Circle)

Dynamic obstacles are not
handled reasonably well
(Time Window)

Smoothness is ignored by some of
them
(Ride Comfort, Tracking
Performance)
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Motivation
Our Goals

Problem Definition
Assuming a curvature continuous path has been generated by a hierarchical motion planning framework,
the speed planning is to find a

time-efficient

safe

smooth

speed profile travelling along the fixed path with respect to both safety and performance constraints.

Our Goals
employ a unified framework to deal with various driving scenarios

cover safety, comfort, time efficiency and mobility

prefer an elegant mathematical model instead of error-prone algorithms
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Methods – Preliminaries
Path Representation
General arc-length representation in Cartesian coordinate system

r(s) = (x(s), y(s)), s ∈ [0, sf ]

Any path can be easily converted to this form.
Associate speed profiles with paths in the arc-length one dimension space
by

s = f(t)

Math Trick according to Verscheure et al.[8]

α(s) = f̈ , longitudinal acceleration

β(s) = ḟ2, square of the longitudinal speed

The prime ′ and the dot · denote derivatives with respect to the arc-length, s,
and the time, t, respectively for a curve.
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Methods
Dynamics and Friction Circle Constraints

path
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Dynamics



Ru = mr̈(s), dynamics equation
r̈(s) = r′′(s)β(s) + r′(s)α(s)

R =

[
cos(θ(s)) − sin(θ(s))

sin(θ(s)) cos(θ(s))

]
, rotation matrix

u = (uτ , uη), control vector

Affine!

θ heading of the car
uτ lateral force in ego frame
uη longitudinal force in ego frame

Friction Circle



(
α(s), β(s),u(s)

)
∈

{(
r̈(s), ṙ2(s),u(s)

) ∣∣
‖u(s)‖ ≤ µmg,

uτ (s) ≤ m · aτmax,

β(s) ≤ v2max

} Convex!
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Methods
Time Efficiency Objective and Time Window Constraints

Time Efficiency

JT = Tsf =

∫ sf

0
β(s)−

1
2 ds

Convex!

Time Window

Ti =

∫ si

0
β(s)−

1
2 ds ∈ (0, TU ]

Convex!
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Methods
Smoothness Objective

The jerk J(s) of the speed:

J (s) =
...
f = α̇(s) = α′(s)ḟ

= α′(s)
√
β(s) =

1

2
β′′(s)

√
β(s),

which is nonlinear and non-convex.(Common used but not a good option for
optimization!)
The pseudo jerk, α′(s):
the first derivative of acceleration with respect to the arc-length, s.
The smoothness function is defined as

JS =

∫ sf

0
‖α′(s)‖2ds,

which is convex!(Our Choice!)
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Methods
Overall Problem Formulation – Convex Optimization Problem

minimize
α(s),β(s),u(s)

J = JT
(Time Efficiency)

+ ωJS
(Smoothness)

s.t.

(Vehicle Dynamics) Ru = mr̈,

(State Constraints) β′(s) = 2α(s), s ∈ [0, sf ],

(Friction Circle)

(
α(s), β(s),u(s)

)
∈

{(
r̈(s), ṙ2(s),u(s)

)∣∣‖u(s)‖ ≤ µmg,

uτ (s) ≤ m · aτmax, β(s) ≤ v2max

}
,

(Boundary Condition)
αsf

≤ αsf ≤ ᾱsf

β
sf

≤ βsf ≤ β̄sf ,
,

(Time Window) ti = T (si) ∈ WT = (0, TU ].

Note that α(s), β(s), u(s) are the decision variables. The coefficient ω ∈ R+ is fixed in advance.

Red parts are our
contributions.

13/2013/20

Speed Planning for Autonomous Driving via Convex Optimization ForwardBack



Speed Planning for
Autonomous Driving via
Convex Optimization

Yu Zhang1 , Huiyan
Chen1 , Steven L.

Waslander2 , Tian Yang1 ,
Sheng Zhang1 ,

Guangming Xiong1 , Kai
Liu1

Motivation

Methods

Results

Reference

Featured Results
Speed Planning for Safe Stop
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Featured Results
Speed Planning Dealing with Jaywalking on a curvy road
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Featured Results
Speed planning for Freeway Entrance Ramp Merging
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Featured Results

Compare to State-of-the-art Methods

Method S TE FC TW BC Optimality Safety Mobility Flexibility

Li et al. [1] X 7 7 7 X 7 low low low
Gu et al. [2, 3, 4] X 7 7 7 X 7 medium medium medium
Dakibay et al. [5] 7 7 X 7 X 7 medium high low
Liu et al. [6] X X– 7 X X– local medium medium medium
Lipp et al. [7] 7 X X 7 7 global low high low
Ours X X X X X global high high high

S: smoothness, TE: time efficiency, FC: friction circle, TW: time window, BC: boundary condition
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Conclusions
Features and Capacities of Our Method

Capacity: general, flexible, complete, and safe
maintain the smoothness of the speed profile

drive within the limits of the friction circle

consider the time efficiency

determine the end boundary condition of the state

perform a precise safe stop

control the arrival time at a certain point on the path
(time window)

guarantee global optimality (convex optimization)

Boundary Condition

Friction Circle

SmoothnessTime Efficiency

Time Window
10

20

30

Li et al. [1]
Gu et al. [2, 4]
Dakibay et al. [5]
Liu et al. [6]
Lipp et al. [7]
Ours
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Results

Expect more improvements?

Please see our follow-up journal papers:

Zhang Y, Chen H, Waslander S, Yang T, Zhang S, Xiong G, Liu K.

“Toward a More Complete, Flexible, and Safer Speed Planning for
Autonomous Driving via Convex Optimization.”

Sensors. 2018 Jul 6;18(7):2185.

Thank you for your attention!
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